Chapter 3
Interacting with Python

In This Chapter
Accessing the command line
Using commands to perform tasks
Obtaining help about Python

Ending a command-line session

u Itimately, any application you create interacts with the computer and
the data it contains. The focus is on data because without data, there
isn’t a good reason to have an application. Any application you use (even one
as simple as Solitaire) manipulates data in some way. In fact, the acronym
CRUD sums up what most applications do:

v Create
v Read

v Update
v Delete

If you remember CRUD, you'll be able to summarize what most applications
do with the data your computer contains (and some applications really are
quite cruddy). However, before your application accesses the computer, you
have to interact with a programming language that creates a list of tasks to
perform in a language the computer understands. That’s the purpose of this
chapter. You begin interacting with Python. Python takes the list of steps you
want to perform on the computer’s data and changes those steps into bits
the computer understands.

40

Part |: Getting Started with Python

Understanding the importance of the README file

Many applications include a README file. The
README file usually provides updated informa-
tion that didn't make it into the documentation
before the application was put into a produc-
tion status. Unfortunately, most people ignore
the README file and some don't even know it
exists. As a result, people who should know
something interesting about their shiny new
product never find out. Python has a README .
txt file in the \Python33 directory. When
you open this file, you find all sorts of really
interesting information:

v How to build a copy of Python for Linux
systems

v Where to find out about new features in this
version of Python

v Where to find the latest version of the
Python documentation

v How to convert your older Python applica-
tions to work with Python 3.3.x

v What you need to do to test custom Python
modifications

v+ How to install multiple versions of Python
on the same system

v How to access bug and issue tracking for
Python

v How to request updates to Python

v How to find out when the next version of
Python will come out

Opening and reading the README file will help
you become a Python genius. People will be
amazed that you really do know something
interesting about Python and will ask you all
sorts of questions (deferring to your wisdom).
Of course, you could always just sit there,
thinking that the README is just too much
effort to read.

Opening the Command Line

Python offers a number of ways to interact with the underlying language. For
example, you worked a bit with the Integrated DeveLopment Environment
(IDLE) in Chapter 2. IDLE makes it easy to develop full-fledged applications.
However, sometimes you simply want to experiment or to run an existing
application. Often, using the command-line version of Python works better
in these cases because it offers better control over the Python environment
through command-line switches, uses fewer resources, and relies on a mini-
malistic interface so that you can focus on trying out code rather than play-
ing with a GUL

Chapter 3: Interacting with Python

|
Figure 3-1:
The Python
command
prompt

tells you a
bit about

the Python
environment.
|

Starting Python

Depending on your platform, you might have multiple ways to start the com-
mand line. Here are the methods that are commonly available:

v Select the Python (command-line) option found in the Python 3.3 folder.
This option starts a command-line session that uses the default settings.

v+ Open a command prompt or terminal, type Python, and press Enter. Use
this option when you want greater flexibility in configuring the Python
environment using command-line switches.

v Locate the Python folder, such as C: \Python33 in Windows, and open
the Python. exe file directly. This option also opens a command-line
session that uses the default settings, but you can do things like open
it with increased privileges (for applications that require access to
secured resources) or modify the executable file properties (to add
command-line switches).

No matter how you start Python at the command line, you eventually end up
with a prompt similar to the one shown in Figure 3-1. (Your screen may look
slightly different from the one shown in Figure 3-1 if you rely on a platform
other than Windows, you’re using IDLE instead of the command-line version
of Python, your system is configured differently from mine, or you have a dif-
ferent version of Python.) This prompt tells you the Python version, the host
operating system, and how to obtain additional information.

< C:\Python33\python.exe == =]

Python 3.3.4 <v3.3.4:7ff62415%e426,. Feh 18 2814, 18:13:51)> [MSC v.1688 64 bhit <AM .
D64>1 on win32 =

nge “help®, “copyright", “credits” or "license"” for more information. = |
222 -

41

42

Part |: Getting Started with Python

Using the command line
to your advantage

This section will seem a little complicated at first, and you won’t normally
need this information when using the book. However, it’s still good informa-
tion, and you’ll eventually need it. For now, you can browse the information
so that you know what’s available and then come back to it later when you
really do need the information.

To start Python at a command prompt, type Python and press Enter. However,
that’s not all you can do. You can also provide some additional information to
change how Python works:

v Options: An option, or command-line switch, begins with a minus sign
followed by one or more letters. For example, if you want to obtain help
about Python, you type Python -h and press Enter. You see additional
information about how to work with Python at the command line. The
options are described later in this section.

v~ Filename: Providing a filename as input tells Python to load that file and
run it. You can run any of the example applications from the download-
able code by providing the name of the file containing the example as
input. For example, say that you have an example named SayHello.py.
To run this example, you type Python SayHello.py and press Enter.

v Arguments: An application can accept additional information as input to
control how it runs. This additional information is called an argument.
Don’t worry too much about arguments right now — they appear later in
the book.

Most of the options won’t make sense right now. They're here so that you can
find them later when you need them (this is the most logical place to include
them in the book). Reading through them will help you gain an understanding
of what’s available, but you can also skip this material until you need it later.

Python uses case-sensitive options. For example, -s is a completely different
option from -S. The Python options are

v -b: Add warnings to the output when your application uses certain
Python features that include: str (bytes_instance), str (bytearray
instance), and comparing bytes or bytearray with str ().

v -bb: Add errors to the output when your application uses certain Python
features that include: str (bytes_instance), str (bytearray
instance), and comparing bytes or bytearray with str ().

v -B: Don’t write .py or .pyco files when performing a module import.

Chapter 3: Interacting with Python

v -c¢ cmd: Use the information provided by cmd to start a program. This
option also tells Python to stop processing the rest of the information as
options (it’s treated as part of the command).

v -d: Start the debugger (used to locate errors in your application).

v -E: Ignore all the Python environment variables, such as PYTHONPATH,
that are used to configure Python for use.

v -h: Display help about the options and basic environment variables
onscreen. Python always exits after it performs this task without doing
anything else so that you can see the help information.

v -1i:Force Python to let you inspect the code interactively after running
a script. It forces a prompt even if stdin (the standard input device)
doesn’t appear to be a terminal.

v -m mod: Run the library module specified by mod as a script. This
option also tells Python to stop processing the rest of the informa-
tion as options (the rest of the information is treated as part of the
command).

v -0: Optimize the generated bytecode slightly (makes it run faster).
v -00: Perform additional optimization by removing doc-strings.

v -q: Tell Python not to print the version and copyright messages on inter-
active startup.

v -s: Force Python not to add the user site directory to sys.path (a vari-
able that tells Python where to find modules).

v -S:Don’t run 'import site' on initialization. Using this option means
that Python won'’t look for paths that may contain modules it needs.

v -u: Allow unbuffered binary input for the stdout (standard output) and
stderr (standard error) devices. The stdin device is always buffered.

v -v: Place Python in verbose mode so that you can see all the import
statements. Using this option multiple times increases the level of
verbosity.

v -V: Display the Python version number and exit.
v - -version: Display the Python version number and exit.

V¥ -W arg: Modify the warning level so that Python displays more or fewer
warnings. The valid arg values are

® action

® message
® category
® module

® lineno

43

b4

Part |: Getting Started with Python

v -x: Skip the first line of a source code file, which allows the use of non-
Unix forms of # ! cmd.

v -X opt: Set an implementation-specific option. (The documentation for
your version of Python discusses these options, if there are any.)

Using Python environment variables
to your advantage

Environment variables are special settings that are part of the command line
or terminal environment for your operating system. They serve to configure
Python in a consistent manner. Environment variables perform many of the
same tasks as do the options that you supply when you start Python, but you
can make environment variables permanent so that you can configure Python
the same way every time you start it without having to manually supply

the option.

As with options, most of these environment variables won’t make any sense
right now. You can read through them to see what is available. You find some
of the environment variables used later in the book. Feel free to skip the rest
of this section and come back to it later when you need it.

Most operating systems provide the means to set environment variables tempo-
rarily, by configuring them during a particular session, or permanently, by con-
figuring them as part of the operating system setup. Precisely how you perform
this task depends on the operating system. For example, when working with
Windows, you can use the Set command (see my blog post at http://blog.
johnmuellerbooks.com/2014/02/24/using-the-set-command-to-
your-advantage/ for details) or rely on a special Windows configuration fea-
ture (see my post at http://blog.johnmuellerbooks.com/2014/02/17/
adding-a-location-to-the-windows-path/ for setting the Path environ-
ment variable as an example).

Using environment variables makes sense when you need to configure Python
the same way on a regular basis. The following list describes the Python envi-
ronment variables:

v PYTHONCASEOK=x: Forces Python to ignore case when parsing import
statements. This is a Windows-only environment variable.
V¥ PYTHONDEBUG=x: Performs the same task as the -d option.

» PYTHONDONTWRITEBYTECODE=x: Performs the same task as the -B
option.

Chapter 3: Interacting with Python 4 5

» PYTHONFAULTHANDLER=x: Forces Python to dump the Python traceback
(list of calls that led to an error) on fatal errors.

» PYTHONHASHSEED=arg: Determines the seed value used to generate
hash values from various kinds of data. When this variable is set to
random, Python uses a random value to seed the hashes of str, bytes,
and datetime objects. The valid integer range is 0 to 4294967295.

Use a specific seed value to obtain predictable hash values for testing
purposes.

V¥ PYTHONHOME=arg: Defines the default search path that Python uses to
look for modules.

» PYTHONINSPECT=x: Performs the same task as the - i option.

» PYTHONIOENCODING=arg: Specifies the encoding[:errors] (such as
utf-8) used for the stdin, stdout, and stderr devices.

v PYTHONNOUSERSITE: Performs the same task as the - s option.
» PYTHONOPTIMIZE=x: Performs the same task as the -0 option.

»* PYTHONPATH=arg: Provides a semicolon (;) separated list of directories
to search for modules. This value is stored in the sys.path variable in
Python.

v PYTHONSTARTUP=arg: Defines the name of a file to execute when
Python starts. There is no default value for this environment variable.

»* PYTHONUNBUFFERED=x: Performs the same task as the -u option.
v PYTHONVERBOSE=x: Performs the same task as the -v option.

» PYTHONWARNINGS=arg: Performs the same task as the -w option.

Typing a Command

After you start the command-line version of Python, you can begin typing
commands. Using commands makes it possible to perform tasks, test ideas
that you have for writing your application, and discover more about Python.
Using the command line lets you gain hands-on experience with how Python
actually works — details that could be hidden by an Interactive Development
Environment (IDE) such as IDLE. The following sections get you started using
the command line.

456

Part |: Getting Started with Python

Telling the computer what to do

Python, like every other programming language in existence, relies on com-
mands. A command is simply a step in a procedure. In Chapter 1, you saw
how “Get the bread and butter from the refrigerator” is a step in a procedure
for making toast. When working with Python, a command, such as print (),
is simply the same thing: a step in a procedure.

To tell the computer what to do, you issue one or more commands that
Python understands. Python translates these commands into instructions
that the computer understands, and then you see the result. A command
such as print () can display the results onscreen so that you get an instant
result. However, Python supports all sorts of commands, many of which don’t
display any results onscreen but still do something important.

As the book progresses, you use commands to perform all sorts of tasks.
Each of these tasks will help you accomplish a goal, just as the steps in a pro-
cedure do. When it seems as if all the Python commands become far too com-
plex, simply remember to look at them as steps in a procedure. Even human
procedures become complex at times, but if you take them one step at a time,
you begin to see how they work. Python commands are the same way. Don’t
get overwhelmed by them; instead, look at them one at a time and focus on
just that step in your procedure.

Telling the computer you've done

At some point, the procedure you create ends. When you make toast, the
procedure ends when you finish buttering the toast. Computer procedures
work precisely the same way. They have a starting and an ending point. When
typing commands, the ending point for a particular step is the Enter key.

You press Enter to tell the computer that you're done typing the command.
As the book progresses, you find that Python provides a number of ways to
signify that a step, group of steps, or even an entire application is complete.
No matter how the task is accomplished, computer programs always have a
distinct starting and stopping point.

Seeing the result

You now know that a command is a step in a procedure and that each
command has a distinct starting and ending point. In addition, groups of
commands and entire applications also have a distinct starting and ending

Chapter 3: Interacting with Python

|
Figure 3-2:
Issuing
commands
tells Python
what to

tell the
computer

to do.
|

point. So, take a look at how this works. The following procedure helps you
see the result of using a command:
1. Start a copy of the Python command-line version.

You see a command prompt where you can type commands, as shown in
Figure 3-1.

2. Type print(“This is a line of text.”) at the command line.

Notice that nothing happens. Yes, you typed a command, but you haven’t
signified that the command is complete.

3. Press Enter.

The command is complete, so you see a result like the one shown in
Figure 3-2.

< C:\Python33\python.exe =n =k >
Python 3.3.4 <v3.3.4:7ff62415%e426, Feh 18 2814, 18:13:51> [MSC v.1688 64 bhit <AM .
D64>1 on win32 ;
Type “help”. “copyright', “credits' or “license" for more information. = |
)gg print{"This is a line of text.')

l;his is a line of text.

This exercise shows you how things work within Python. Each command
that you type performs some task, but only after you tell Python that the
command is complete in some way. The print () command displays data
onscreen. In this case, you supplied text to display. Notice that the output
shown in Figure 3-2 comes immediately after the command because this is
an interactive environment — one in which you see the result of any given
command immediately after Python performs it. Later, as you start creating
applications, you notice that sometimes a result doesn’t appear immediately
because the application environment delays it. Even so, the command is
executed by Python immediately after the application tells Python that the
command is complete.

b7

58

Part |: Getting Started with Python

Using Help

Python is a computer language, not a human language. As a result, you won'’t
speak it fluently at first. If you think about it for a moment, it makes sense
that you won’t speak Python fluently (and as with most human languages,
you won't know every command even after you do become fluent). Having
to discover Python commands a little at a time is the same thing that hap-
pens when you learn to speak another human language. If you normally
speak English and try to say something in German, you find that you must
have some sort of guide to help you along. Otherwise, anything you say is
gibberish and people will look at you quite oddly. Even if you manage to say
something that makes sense, it may not be what you want. You might go to
a restaurant and order hot hubcaps for dinner when what you really wanted
was a steak.

Likewise, when you try to speak Python, you need a guide to help you. Fortu-
nately, Python is quite accommodating and provides immediate help to keep
you from ordering something you really don’t want. The help provided inside
Python works at two levels:

+* Help mode, in which you can browse the available commands

v+ Direct help, in which you ask about a specific command

There isn’t a correct way to use help — just the method that works best for
you at a particular time. The following sections describe how to obtain help.

Getting into help mode

When you first start Python, you see a display similar to the one shown in
Figure 3-1. Notice that Python provides you with four commands at the outset
(which is actually your first piece of help information):

¥ help

V¥ copyright

V¥ credits

V¥ license
All four commands provide you with help, of a sort, about Python. For exam-

ple, the copyright () command tells you about who holds the right to copy,
license, or otherwise distribute Python. The credits () command tells you

Chapter 3: Interacting with Python 4 9

|
Figure 3-3:
You ask
Python
about other
commands
in help
mode.

who put Python together. The 1icense () command describes the usage
agreement between you and the copyright holder. However, the command
you most want to know about is simply help ().

To enter help mode, type help() and press Enter. Notice that you must
include the parentheses after the command even though they don’t appear

in the help text. Every Python command has parentheses associated with it.
After you enter this command, Python goes into help mode and you see a dis-
play similar to the one shown in Figure 3-3.

2 C:\Python33\python.exe [E=3|EoE|)
Python 3.3.4 <(v3.3.4:7ff62415e426,. Feb 18 2814, 18:13:51)> [MSC v.1688 64 bit <{AM .
D64>1 on win32

Tgpe “help", “copyright", “credits" or "license" for more information.
>

> helpC

elcome to Python 3.3%* This is the interactive help utility.

If this is your first time uwsing Python. you should definitely check out
the tutorial on the Internet at http:/sdocs.python.orgs3.3/tutorial’.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules. To guit this help utility and
return to the interpreter, just type "guit'.

To get a list of available modules,. keywords,. or topics,. type "modules'.

"keywords", or "topics". Each module also comes with a one-line summary

of what it does; to list the modules whose summaries contain a given word
such as "spam", type “modules spam".

help> _

You can always tell that you're in help mode by the help> prompt that you
see in the Python window. As long as you see the help> prompt, you know
that you're in help mode.

Asking for help

To obtain help, you need to know what question to ask. The initial help mes-
sage that you see when you go into help mode (refer to Figure 3-3) provides
some helpful tips about the kinds of questions you can ask. If you want to
explore Python, the three basic topics are

» modules

V¥ keywords

V¥ topics

50

Part |: Getting Started with Python

|
Figure 3-4:
The
topics
help topic
provides

you with

a starting
point for
your Python
adventure.
|

<MBER
S

|
Figure 3-5:
You must
use
uppercase
when
requesting
topic
information.
|

The first two topics won't tell you much for now. You won’t need the modules
topic until Chapter 10. The keywords topic will begin proving useful in
Chapter 4. However, the topics keyword is already useful because it helps
you understand where to begin your Python adventure. To see what topics
are available, type topics and press Enter. You see a list of topics similar to
those shown in Figure 3-4.

IJ

2 C:\Python33\python.exe
‘help> topics

=5 608 (EX3)

ere is a list of available topics. Enter any topic name to get more help.

m

SSERTION DELETION LITERALS SEQUENCES
SSIGNMENT DICTIONARIES LOOPING SHIFTING
TTRIBUTEMETHODS DICTIONARYLITERALS MAPPINGMETHODS SLICINGS
TTRIBUTES DYNAMICFEATURES MAPPINGS SPECIALATTRIBUTES
UGMENTEDASSIGNMENT ELLIPSIS METHODS SPECIALIDENTIFIERS
AS ICMETHODS EXCEPTIONS MODULES SPECIALMETHODS
INARY EXECUTION NﬂHESPRCES STRINGMETHODS
ITUISE EXPRESSIONS STRINGS

[BOOLEAN FILES NUMBERHETHODS SUBSCRIPTS

CALLABLEMETHODS FLOAT TRACEBACKS

CALLS FORMATTING OBJECTS TRUTHUALUE

CLASSES FRAMEOBJECTS OPERATORS TUPLELITERALS
CODEOBJECTS FRAMES PACKAGES UPLES

COMPARISON FUNCTIONS POUER TYPEOBJECTS
COMPLEY IDENTIFIERS PRECEDENCE TYPES

GONDITIONAL IMPORTING PRIUVATENAMES UNARY
CONTEXTMANAGERS INTEGER RETURNING UNICODE

GCONUERS I ONS LISTLITERALS SCOPING

DEBUGGING LISTS SEQUENCEMETHODS

thelp> _ o

When you see a topic that you like, such as FUNCTIONS, simply type that
topic and press Enter. To see how this works, type FUNCTIONS and press
Enter (you must type the word in uppercase — don’t worry, Python won’t
think you’re shouting). You see help information similar to that shown in
Figure 3-5.

< C:\Python33\python.exe (===
CODEOBJECTS FRAMES PACKAGES TUPLES i
COMPARISON FUNCTI10NS POUER TYPEOBJECTS
COMPLER IDENTIFIERS PRECEDENCE TYPES
CONDITIONAL IMPORTING PRIVATENAMES UNARY
ONTEXTMANAGERS INTEGER RETURNING UNICODE =l
ONUERS IONS LISTLITERALS SCOPING b= |
EBUGGING LISTS SEQUENCEMETHODS
elp> FUNCTIONS
unctions

unction objects are created by function definitions. The only
peration on a function obhject is to call it: "func{argument—list)>".

here are really two flavors of function objects: built—in functions
and user—defined functions. Both support t same operation (to call
the function), but the implementation is different, hence the

ifferent ohject tupes.

ee *Punction definitions* for more information.

elated help topics: def. TYPES

elp> _

|
Figure 3-6:
Request
com-

mand help
information
by typing the
command
using
whatever
case it
actually
uses.
|

\\J

|
Figure 3-7:
You can ask
for help on
the help you
receive.
|

Chapter 3: Interacting with Python 5 ’

As you work through examples in the book, you use commands that look
interesting, and you might want more information about them. For example,
in the “Seeing the result” section of this chapter, you use the print () com-
mand. To see more information about the print () command, type print and
press Enter (notice that you don’t include the parentheses this time because
you're requesting help about print (), not actually using the command).
Figure 3-6 shows typical help information for the print () command.

2 C:\Python33\python.exe ===

operation on a function object is teo call it: “funclargument—list)>".

There are really two flavors of function objects: built—in functions
and user—defined functions. Both support the same operation {teo call
the function), but the implementation is different, hence the
different ohject types.

m

See #Punction definitions* for more information.

elated help topics: def. TYPES
elp> print
elp on built-in function print in module bhuiltins:
print{...>
print{value, ..., sep=" ', end="n’, file=sys.stdout, flush=Falsel

Prints the values to a stream, or to sys.stdout hy default.

Optional keyword arguments:

file: a file—like object (stream); defaults to the current sys.stdout.
sep: string inserted between values, default a space.

end: string appended after the last value., default a newline.

flush: whether to forcibly flush the stream.

thelp> _ o

Unfortunately, reading the help information probably doesn’t help much yet
because you need to know more about Python. However, you can ask for more
information. For example, you might wonder what sys. stdout means — and
the help topic certainly doesn’t tell you anything about it. Type sys.stdout and
press Enter. You see the help information shown in Figure 3-7.

< C:\Python33\python.exe =3 EeE)

Help on TextIOWrapper in sys ohject: -

SYs . stdout = class TextIOWrapper<_ TextIOBase>
Character and line hased yer over a BufferedlOBase object. bhuffer.

encoding gives the name of the encoding that the stream will he
decoded or encoded with. It defaults to locale.getpreferredencoding{False>.

m

errors determines the strictness of encoding and decoding {(see
help{codecs.Codec? or the documentation for codecs.register? and
defaults to “strict".

new11ne controls how line endings are handled. It can be None, *'’,
wn’,. *Ne', and ‘Newnt. It works as follows:

* On input, if newline is None. wniversal newlines mode is
enabled. Lines in the input can end in ‘“n’. '’ or *“pun’,. and
these are translated into *“n’ hefore being returned to the
caller. If it is **. universal newline mode is enabhled, but line
endings are returned to the caller untranslated. If it has any of
the other legal values, input lines are only terminated by the given
string, and the line ending is returned to the caller untranslated.

* On output, if newline is MNone, any *“n’ characters written are
More — _

52

Part |: Getting Started with Python

|
Figure 3-8:
Exit help
mode by
pressing
Enter with-
out typing
anything.
|

You may still not find the information as helpful as you need, but at least you
know a little more. In this case, help has a lot to say and it can’t all fit on one
screen. Notice the following entry at the bottom of the screen:

-- More --

To see the additional information, press the spacebar. The next page of help
appears. As you read to the bottom of each page of help, you can press the
spacebar to see the next page. The pages don’t go away — you can scroll up
to see previous material.

Leaving help mode

At some point, you need to leave help mode to perform useful work. All you
have to do is press Enter without typing anything. When you press Enter, you
see a message about leaving help, and then the prompt changes to the stan-
dard Python prompt, as shown in Figure 3-8.

< C:\Python33\python.exe (===

—dter__{...>
X.__iter_ > {==> iterix)

readlines(...)
Return a list of lines from the stream.

hint can he specified to contrel the number of lines read: no more
lines will he read if the total size (in hytes/characters? of all
lines so far exceeds hint.

writelines<{...>

Data descriptors inherited from _IOBase:

__diet__
help>

You are now leaving help and returning te the Python interpreter.

If you want to ask for help on a particular obhject directly from the

interpreter,. you can type "help{ohject?". Executing "help{’string’>"

ggg the same effect as typing a particular string at the help> prompt. =

Obtaining help directly

Entering help mode isn’t necessary unless you want to browse, which is
always a good idea, or unless you don’t actually know what you need to find.
If you have a good idea of what you need, all you need to do is ask for help
directly (a really nice thing for Python to do). So, instead of fiddling with
help mode, you simply type the word help, followed by a left parenthesis and

Chapter 3: Interacting with Python

|
Figure 3-9:
Python
makes it
possible to
obtain help
whenever
you need

it without
leaving

the Python
prompt.
|

Figure 3-10:
It's possible
to browse at
the Python
prompt if
you really
want to.
|

single quote, whatever you want to find, another single quote, and the right
parenthesis. For example, if you want to know more about the print () com-
mand, you type help('print") and press Enter. Figure 3-9 shows typical output
when you access help this way.

< C:\Python33\python.exe =3 EeE)

-

Data descriptors inherited from _IOBase:

__diet__
he 1p>

You are now leaving help and returning to the Python interpreter.

If you want to ask for help on a particular ohject directly from the
interpreter, you can type “help{object>". Executing "help(’'string’>"
has the same effect as typing a particular string at the help> prompt.
>2>> help{’ print’>

Help on built-in function print in module bhuiltins:

print{...>
print{value, ..., sep=' ', end="~n’, file-sys.stdout, flush=Falsel

|.m

Prints the values to a stream. or to sys.stdout by default.

Optional keyword arguments:

file: a file—-like obgect {stream); defaults to the current sys.stdout.
sep: string inserted between values, default a space.

end: string appended after the last value. default a newline.

flush: whether to forcibly flush the stream.

>

You can browse at the Python prompt, too. For example, when you type
help('topics') and press Enter, you see a list of topics like the one that
appears in Figure 3-10. You can compare this list with the one shown in
Figure 3-4. The two lists are identical, even though you typed one while in
help mode and the other while at the Python prompt.

< C:\Python33\python.exe F=3|E=h >
>>> help<’topics’> -
ere is a list of available topics. Enter any topic name to get more help.
SSERTION DELETION LITERALS SEQUENCES
SSIGNMENT DICTIONARIES LOOPING SHIFTING
TTRIBUTEHETHODS DICTIONARYLITERALE MAPPINGMETHODS SLICINGS
TTRIBUT DYNAMICFEATURES MAPPINGE SPECIALATTRIBUTES
UGHENTEDHSSIGNHENT ELLIPSIS METHODS SPECIALIDENT IFIERS
ASICMETH EXCEPTIONS MODULES SPECIALMETHODS
INARY EXECUTION NﬂMESPRCES STRINGHETHODS
ITWISE EXPRESSIONS STRINGS
[BOOLEAN FILES NUHBERHETHODS SUBSCRIPTS
CALLABLEMETHODS FLOAT TRACEBACKS
CALLS FORMATTING OBJECTS TRUTHUALUE
CLASSES FRAMEOBJECTS OPERATORS TUPLELITERALS
CODEOBJECTS FRAMES PACKAGES TUPLES
COMPARISON FUNCT I ONS FOWER TYPEOBJECTS
COMPLEY IDENTIFIERS PRECEDENCE TYPES =
CONDITIONAL IMPORTING PRIUATENAMES UNARY
COMTEXTMANAGERS INTEGER RETURNIHNG UNICODE
CONUERS I ONS LISTLITERALS COPING
DEBUGGING LISTS SEQUENCEMETHODS
222 il

53

54

Part |: Getting Started with Python

NMBER
\x&
&

WMBER
@%
&

You might wonder why Python has a help mode at all if you can get the same
results at the Python prompt. The answer is convenience. It’s easier to browse
in the help mode. In addition, even though you don’t do a lot of extra typing
at the prompt, you do perform less typing while in help mode. Help mode also
provides additional helps, such as by listing commands that you can type, as
shown in Figure 3-3. So you have all kinds of good reasons to enter help mode
when you plan to ask Python a lot of help questions.

No matter where you ask for help, you need to observe the correct capitaliza-
tion of help topics. For example, if you want general information about func-
tions, you must type help('FUNCTIONS') and not help ('Functions') or
help ('functions').When you use the wrong capitalization, Python will tell
you that it doesn’t know what you mean or that it couldn’t find the help topic.
It won’t know to tell you that you used the wrong capitalization. Someday
computers will know what you meant to type, rather than what you did type,
but that hasn’t happened yet.

Closing the Command Line

Eventually, you want to leave Python. Yes, it’s hard to believe, but people
have other things to do besides playing with Python all day long. You have
two standard methods for leaving Python and a whole bunch of nonstandard
methods. Generally, you want to use one of the standard methods to ensure
that Python behaves as you expect it to, but the nonstandard methods work
just fine when you simply want to play around with Python and not perform
any productive work. The two standard methods are

V¥ quit ()
V¥ exit ()

Either of these methods will close the interactive version of Python. The shell
(the Python program) is designed to allow either command.

Both of these commands can accept an optional argument. For example,

you can type quit() or exit(5) and press Enter to exit the shell. The numeric
argument sets the command prompt’s ERRORLEVEL environment variable,
which you can then intercept at the command line or as part of a batch file.
Standard practice is to simply use quit () or exit () when nothing has gone
wrong with the application. To see this way of exiting at work, you must

1. Open a command prompt or terminal.
You see a prompt.

2. Type Python and press Enter to start Python.
You see the Python prompt.

Chapter 3: Interacting with Python

Figure 3-11:
Add an error
code when
needed to
tell others
the Python
exit status.
|

3. Type quit(5) and press Enter.
You see the prompt again.
4. Type echo %ERRORLEVEL?% and press Enter.

You see the error code, as shown in Figure 3-11. When working with plat-
forms other than Windows, you may need to type something other than
echo %ERRORLEVELS. For example, when working with a bash script,
you type echo $ instead.

&8 Administrator: Command Prompt [oll= =)

-

C:n>Python

Python 3.3.4 <v3.3.4:7ff62415e426, Feh 18 2814, 18:13:51)> [MSC v.1688 64 bit {AM =
D64>1 on win3d2

Tyge "helg", “copyright”, “credits" or “license" for more information.

>33 quitdhd>

E :\>echo “ERRORLEVELx

Ciny

One of the most common nonstandard exit methods is to simply click the
command prompt’s or terminal’s Close button. Using this approach means
that your application may not have time to perform any required cleanup,
which can result in odd behaviors. It’s always better to close Python using an
expected approach if you've been doing anything more than simply browsing.

You also have access to a number of other commands for closing the command
prompt when needed. In most cases, you won’t need these special commands,
so you can skip the rest of this section if desired.

When you use quit () or exit (), Python performs a number of tasks to
ensure that everything is neat and tidy before the session ends. If you sus-
pect that a session might not end properly anyway, you can always rely on
one of these two commands to close the command prompt:

V¥ sys.exit ()

V¥ os. exit()

55

56

Part |: Getting Started with Python

Both of these commands are used in emergency situations only. The first,
sys.exit (), provides special error-handling features that you discover in
Chapter 9. The second, os. exit (), exits Python without performing any of
the usual cleanup tasks. In both cases, you must import the required module,
either sys or os, before you can use the associated command. Consequently,
to use the sys.exit () command, you actually use this code:

import sys
sys.exit ()

You must provide an error code when using os. exit () because this
command is used only when an extreme error has occurred. The call to
this command will fail if you don’t provide an error code. To use the os.
exit () command, you actually use this code (where the error code is 5):

import os
os. exit (5)

Chapter 10 discusses importing modules in detail. For now, just know that
these two commands are for special uses only and you won’t normally use
them in an application.

